Assessment Schedule - 2006 version 3

Science: Describe aspects of physics (90191)

Evidence Statement

Q	Achievement	Achievement with Merit	Achievement with Excellence
1(a)	2500 metres		
1(b)		Correct solution $V_{\text{av}} = \frac{d_{\text{total}}}{t_{\text{total}}}$ $= \frac{3000}{540}$ $= 5.6 \text{ m s}^{-1} \text{ (if 5.5 must have correct working)}$	
1(c)	Accelerating / increase in speed.		
1(d)	Shows Working. $= \frac{1500}{180}$ =8.3 ms ⁻¹		
1(e)		Correct solution $E_{k} = \frac{1}{2}mv^{2}$ $= \frac{1}{2} \times 70 \times 8.3^{2}$ $= 2411 \text{ J}$ or = 2431 J (if used unrounded v)	
1(f)	All four arrows labelled and correct direction Support Friction Weight		
1(g)	Forces are balanced. OR Forces are equal and opposite. OR Friction and push are equal.	For an object to change its speed it requires an unbalanced force / net force. OR A net force of zero means that $a = 0$, therefore speed is not changing.	

1(h)		Correct solution (do not need negative) $A = \Delta v / \Delta t$ $= (0 - 8.3) / 180$ $= 0.05 \text{ (or } 0.046 \text{ unrounded)}$	
1(i)	Forces become unbalanced. OR Friction increases/ push decreases.	Friction becomes greater than the push force (causing a deceleration). OR Less push relative to friction (causing a deceleration).	
1(j)	Correct solution $F = ma$ $= 70 \times 1.5$ $= 105 \text{ N}$		
1(k)		EITHER Correctly calculated work / value. $W(E) = F \times d$ $= 105 \times 25$ $= 2625$ OR Incorrectly calculated work (working shown) correctly substituted into Power = $\frac{E}{t}$ NB: Must show equation $P = \frac{E}{t}$	Correct solution $W(E) = F \times d$ $= 105 \times 25$ $= 2625$ $Power = \frac{E}{t}$ $= \frac{2625}{5}$ $= 525 \text{ W}$
2(a)	No (air) particles / matter / medium.		
2(b)	Links feature with heat transfer method. A vacuum does not allow conduction / convection. OR Silvered surfaces reflect / reduce radiation. OR plastic is a poor conductor / good insulator. OR A small opening / lid reduces heat loss by convection. NOTE: A student may provide evidence for 2(a) in this answer.	Reason for heat reduction by ONE design feature. Conduction / convection will not occur as they need particles / medium to transfer heat. OR The silvered internal surface reflects radiated heat back into the mug, reducing heat loss by radiation. OR The plastic top is a poor conductor / good insulator of heat, thereby reducing the loss of heat through the lid. OR The small opening / lid reduces the amount of heat lost through convection as less hot air particles can escape.	Reason for heat reduction by TWO design features. Conduction / convection will not occur as they need particles / medium to transfer heat. OR The silvered internal surface reflects radiated heat back into the mug, reducing heat loss by radiation. OR The plastic top is a poor conductor / good insulator of heat, thereby reducing the loss of heat through the lid. OR The small opening / lid reduces the amount of heat lost through convection as less hot air particles can escape.

3(a)	Parallel		
3(b)	If one bulb blows the other will keep going. OR All bulbs (in parallel) will be at maximum brightness.	Gives reason for one idea. If one bulb blows, there is still a pathway for current through the other bulb so it will still glow. OR Bulbs in parallel will receive the full voltage of the battery leading to maximum brightness.	
3(c)	12 V		
3(d)	Correct solution $P = VI$		
	= 12 × 0.5 = 6 W possible follow-on from 3(c) (if use V=6V P= 3W)		
3(e)	No effect/ still works.		
3(f)	Correct unit Ω/ohm	EITHER Correctly calculated current/value $I = \frac{P}{V}$ $= \frac{30}{12}$ $= 2.5$ OR Incorrectly calculated current correctly substituted into $R = \frac{12}{I}$ NB: Must show equation $R = \frac{V}{I}$ OR Correct solution (4.8), but wrong/no unit.	Correct solution and unit $I = \frac{P}{V}$ $= \frac{30}{12}$ $= 2.5$ Resistance = $\frac{V}{I}$ $= \frac{12}{2.5}$ $= 4.8 \Omega$
3(g)	Describes ONE feature A higher wattage bulb has a lower resistance. OR A higher wattage bulb draws more current. OR A higher wattage bulb transfers more energy per second.	ONE idea explained. A higher wattage bulb has a lower resistance, leading to a higher current being drawn by the bulb. OR The current is higher which means that the bulb is able to transfer / convert more energy per second, making it brighter.	Links TWO explanations A higher wattage bulb has a lower resistance, leading to a higher current being drawn by the bulb. AND The bulb is able to transfer / convert more energy per second making it brighter.

3(h)	Correct solution	
	E = P t = 45 × 120 = 5400 J	

Judgement Statement

Science: Describe aspects of physics (90191)

Achievement	Achievement with Merit	Achievement with Excellence
ELEVEN questions answered correctly. Minimum of 11 × A	FOURTEEN questions answered correctly, including at least SEVEN at Merit level. Minimum of 7 × M + 7 × A	FIFTEEN questions answered correctly, including at least TWO at Excellence level with at least ONE from Q1(k) / Q3(f) and at least ONE from Q2(b) / Q3(g), plus at least SIX at Merit level. Minimum of $2 \times E$ [ONE from Q1(k) / Q3(f) and ONE from Q2(b) / Q3(g)] + $6 \times M + 7 \times A$